Skip to content

If we want to catch the hidden causality in a large and complex system, which includes a lot series, we also provide some functions to show it better.

Pattern causality matrix

The DJS data includes 29 stock price series, which is large enough for our analysis.

library(patterncausality)
data(DJS)
#head(DJS)

Then we could estimate the pattern causality in this dataset by pcMatrix function.

dataset <- DJS[,-1] # remove the date column
result <- pcMatrix(dataset, E = 3, tau = 1, metric = "euclidean", h = 2, weighted = TRUE)

Then we could see the three matrixs after calculating.

head(result$positive)
#>           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,]        NA 0.4464555 0.3686338 0.4334828 0.4497469 0.4185127
#> [2,] 0.4135754        NA 0.3552519 0.4511914 0.4284627 0.3827940
#> [3,] 0.3920266 0.4120172        NA 0.3998358 0.4099279 0.3393939
#> [4,] 0.4114420 0.4368088 0.3821340        NA 0.4387443 0.3498717
#> [5,] 0.4311008 0.4414003 0.4054487 0.4507148        NA 0.4685803
#> [6,] 0.3847981 0.3716814 0.3782051 0.3813694 0.4300077        NA
#>           [,7]      [,8]      [,9]     [,10]     [,11]     [,12]
#> [1,] 0.4137931 0.3973064 0.4672897 0.3859504 0.4559156 0.4193548
#> [2,] 0.4149026 0.3819320 0.4179343 0.3576105 0.4190476 0.4506627
#> [3,] 0.3786247 0.2782609 0.3852107 0.3427386 0.3776824 0.3878357
#> [4,] 0.4031852 0.3473590 0.4079602 0.3453947 0.4336283 0.4123879
#> [5,] 0.4017642 0.3725000 0.4882353 0.4197719 0.4362205 0.4740061
#> [6,] 0.3394415 0.3746702 0.3904221 0.5105802 0.3807947 0.4021824
#>          [,13]     [,14]     [,15]     [,16]     [,17]     [,18]
#> [1,] 0.4021036 0.4080505 0.3995253 0.4121014 0.4221840 0.3377897
#> [2,] 0.4022169 0.4017642 0.3537937 0.4459459 0.3902439 0.3885516
#> [3,] 0.3935644 0.3949247 0.3049956 0.3900245 0.3573854 0.2811355
#> [4,] 0.3575655 0.3755069 0.3682403 0.3904221 0.3144816 0.3555556
#> [5,] 0.4344718 0.4030327 0.3213028 0.4351563 0.3818636 0.3592073
#> [6,] 0.3965658 0.3848168 0.3670782 0.3573123 0.3670569 0.3561888
#>          [,19]     [,20]     [,21]     [,22]     [,23]     [,24]
#> [1,] 0.3647364 0.4228243 0.3413422 0.3581197 0.4031373 0.4038462
#> [2,] 0.3686306 0.3764706 0.3641869 0.3474218 0.4297386 0.4132997
#> [3,] 0.3933764 0.3582215 0.2842960 0.2729659 0.3705933 0.3204904
#> [4,] 0.3424296 0.3800648 0.3422645 0.3417722 0.3878583 0.3823287
#> [5,] 0.3909014 0.3858203 0.3493151 0.3142123 0.4148936 0.3838631
#> [6,] 0.3259494 0.3466440 0.3212389 0.3312388 0.3469055 0.3327815
#>          [,25]     [,26]     [,27]     [,28]     [,29]
#> [1,] 0.4668630 0.3491525 0.3667482 0.3673820 0.4131642
#> [2,] 0.4375000 0.3766122 0.3549518 0.3470437 0.4271318
#> [3,] 0.3851295 0.3144816 0.3289474 0.2942255 0.3732681
#> [4,] 0.4591915 0.3112640 0.3524229 0.3477157 0.4026080
#> [5,] 0.4982505 0.3713178 0.3520140 0.3539604 0.3933447
#> [6,] 0.3809148 0.3279797 0.3393162 0.3135739 0.3718506

Then we can visualize the result by plotMatrix function.

  • positive status
plotMatrix(result, status = "positive", method = "circle")

  • negative status
plotMatrix(result, status = "negative", method = "circle")

  • dark status
plotMatrix(result, status = "dark", method = "circle")

We could see that there is a obvious positive connection in this system.

Pattern causality effect

After we get the matrix, we can find the total effect in the system, we provide the function pcEffect to achieve this target.

effects <- pcEffect(result)
print(effects)
#> $positive
#>                      received   exerted         Diff
#> X3M                 1129.5512 1136.2993   -6.7480867
#> American.Express    1109.8869 1164.8310  -54.9440870
#> Apple                992.1580 1023.7801  -31.6221209
#> Boeing              1058.0608 1120.4791  -62.4182345
#> Caterpillar         1133.2671 1146.7383  -13.4712060
#> Chevron             1031.1565 1044.2211  -13.0646022
#> Cisco.Systems       1042.7957 1079.4614  -36.6656962
#> Coca.Cola           1033.7264  992.8883   40.8380558
#> DowDuPont           1111.3344 1112.0656   -0.7312588
#> ExxonMobil          1062.4768  989.9327   72.5440673
#> General.Electric    1105.2920 1126.1430  -20.8510095
#> Goldman.Sachs       1037.5409 1146.9424 -109.4014643
#> IBM                 1121.0063 1079.0178   41.9884669
#> Intel               1069.6753 1064.0050    5.6702996
#> Johnson...Johnson   1086.8271  969.1108  117.7163617
#> JPMorgan.Chase      1102.6635 1104.8011   -2.1376396
#> McDonald.s           990.2739 1024.9226  -34.6487534
#> Merck                969.0533 1016.5654  -47.5120847
#> Microsoft           1091.7622 1038.9909   52.7713246
#> Nike                1023.2977 1022.6086    0.6891073
#> Pfizer              1012.0584  998.4551   13.6033180
#> Procter...Gamble     986.9884  925.6683   61.3201536
#> The.Home.Depot      1093.7925 1104.2273  -10.4347289
#> Travelers           1082.7487 1039.6915   43.0572732
#> United.Technologies 1110.7435 1148.4401  -37.6965110
#> UnitedHealth.Group   892.9267  951.1590  -58.2322811
#> Verizon             1033.1636  993.5064   39.6571690
#> Walmart             1051.3388  953.3171   98.0216941
#> Walt.Disney         1078.3198 1125.6173  -47.2975263
#> 
#> $negative
#>                     received  exerted       Diff
#> X3M                 373.8818 353.3466  20.535222
#> American.Express    373.7054 345.4601  28.245358
#> Apple               473.9539 432.2883  41.665599
#> Boeing              401.8412 358.2462  43.595028
#> Caterpillar         365.3584 345.8385  19.519878
#> Chevron             421.3270 419.1647   2.162316
#> Cisco.Systems       408.5475 400.0414   8.506160
#> Coca.Cola           411.4090 451.9012 -40.492138
#> DowDuPont           388.5262 373.7321  14.794158
#> ExxonMobil          412.9172 463.7885 -50.871308
#> General.Electric    355.7266 378.4351 -22.708502
#> Goldman.Sachs       422.4826 359.7218  62.760815
#> IBM                 363.1531 418.7563 -55.603273
#> Intel               399.7430 403.0307  -3.287757
#> Johnson...Johnson   399.0242 478.5350 -79.510839
#> JPMorgan.Chase      375.9222 369.4981   6.424116
#> McDonald.s          458.5950 431.6724  26.922563
#> Merck               435.4795 446.8203 -11.340824
#> Microsoft           403.6935 437.4062 -33.712621
#> Nike                451.1064 412.0858  39.020546
#> Pfizer              426.8867 436.6976  -9.810898
#> Procter...Gamble    450.7500 510.3111 -59.561017
#> The.Home.Depot      400.3182 381.2213  19.096924
#> Travelers           402.6511 435.1085 -32.457437
#> United.Technologies 386.1009 347.3862  38.714688
#> UnitedHealth.Group  509.4764 470.3607  39.115667
#> Verizon             438.1047 432.3609   5.743730
#> Walmart             414.9423 484.7629 -69.820578
#> Walt.Disney         413.8462 361.4918  52.354423
#> 
#> $dark
#>                     received  exerted        Diff
#> X3M                 1296.567 1310.354 -13.7871351
#> American.Express    1316.408 1289.709  26.6987292
#> Apple               1333.888 1343.932 -10.0434786
#> Boeing              1340.098 1321.275  18.8232064
#> Caterpillar         1301.375 1307.423  -6.0486719
#> Chevron             1347.516 1336.614  10.9022862
#> Cisco.Systems       1348.657 1320.497  28.1595363
#> Coca.Cola           1354.865 1355.211  -0.3459181
#> DowDuPont           1300.139 1314.202 -14.0628991
#> ExxonMobil          1324.606 1346.279 -21.6727588
#> General.Electric    1338.981 1295.422  43.5595115
#> Goldman.Sachs       1339.976 1293.336  46.6406492
#> IBM                 1315.841 1302.226  13.6148066
#> Intel               1330.582 1332.964  -2.3825429
#> Johnson...Johnson   1314.149 1352.354 -38.2055223
#> JPMorgan.Chase      1321.414 1325.701  -4.2864766
#> McDonald.s          1351.131 1343.405   7.7261906
#> Merck               1395.467 1336.614  58.8529086
#> Microsoft           1304.544 1323.603 -19.0587033
#> Nike                1325.596 1365.306 -39.7096535
#> Pfizer              1361.055 1364.847  -3.7924203
#> Procter...Gamble    1362.262 1364.021  -1.7591371
#> The.Home.Depot      1305.889 1314.551  -8.6621955
#> Travelers           1314.600 1325.200 -10.5998366
#> United.Technologies 1303.156 1304.174  -1.0181768
#> UnitedHealth.Group  1397.597 1378.480  19.1166144
#> Verizon             1328.732 1374.133 -45.4008993
#> Walmart             1333.719 1361.920 -28.2011159
#> Walt.Disney         1307.834 1312.891  -5.0568971
#> 
#> $items
#>  [1] "X3M"                 "American.Express"    "Apple"              
#>  [4] "Boeing"              "Caterpillar"         "Chevron"            
#>  [7] "Cisco.Systems"       "Coca.Cola"           "DowDuPont"          
#> [10] "ExxonMobil"          "General.Electric"    "Goldman.Sachs"      
#> [13] "IBM"                 "Intel"               "Johnson...Johnson"  
#> [16] "JPMorgan.Chase"      "McDonald.s"          "Merck"              
#> [19] "Microsoft"           "Nike"                "Pfizer"             
#> [22] "Procter...Gamble"    "The.Home.Depot"      "Travelers"          
#> [25] "United.Technologies" "UnitedHealth.Group"  "Verizon"            
#> [28] "Walmart"             "Walt.Disney"

Then we could observe the total effect in pattern causality.

plotEffect(effects, "negative",TRUE)