Optimal Parameters Search for Causality Analysis
Source:R/optimalParametersSearch.R
optimalParametersSearch.Rd
Searches for the optimal embedding dimension (E) and time delay (tau) to maximize the accuracy of causality predictions in a dataset. It evaluates each combination of E and tau for their ability to predict different types of causality: total, positive, negative, and dark.
Value
A data frame summarizing the causality analysis results across all tested E and tau values, showing the mean total, positive, negative, and dark causality accuracies for each parameter combination.
Examples
data(climate_indices)
dataset <- climate_indices[, -1]
# \donttest{
optimalParams <- optimalParametersSearch(Emax=3, tauMax=3, metric="euclidean", dataset=dataset)
#> Testing | E: 2
#> Testing | tau: 1
#> Testing | tau: 2
#> Testing | tau: 3
#> Testing | E: 3
#> Testing | tau: 1
#> Testing | tau: 2
#> Testing | tau: 3
#> Calculation duration: 42.0741589069366
print(optimalParams)
#> Total of which Positive of which Negative of which Dark
#> E = 2 tau = 1 0.5543614 0.5519477 0.4474361 0.0006162144
#> E = 2 tau = 2 0.5727414 0.5736100 0.4232828 0.0031071596
#> E = 2 tau = 3 0.5711838 0.5469069 0.4513270 0.0017660870
#> E = 3 tau = 1 0.3305296 0.3457169 0.2470929 0.4071902523
#> E = 3 tau = 2 0.3500000 0.4037138 0.2547524 0.3415338782
#> E = 3 tau = 3 0.3570093 0.3657638 0.2690536 0.3651826225
# }